Liquid Crystal Elastomer Actuators Enhanced by Tapered Optical Fibers for Controllable Bending Directions and Amplitudes

Author:

He Yongcheng1,Liu Haojun1,Luo Jiajia1,Li Nuo1,Zhang Zhishen2,Gan Jiulin1ORCID,Yang Zhongmin13

Affiliation:

1. State Key Laboratory Luminescent Materials and Devices Institute of Optical Communication Materials Special Glass Fiber and Device Engineering Technology Research and Development Center of Guangdong Province Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques South China University of Technology Guangzhou 510641 China

2. Guangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic Technology School of Physics and Optoelectronic Engineering Foshan University Foshan 528000 China

3. Future Institute of Technology School of Information and Optoelectronic Science and Engineering South China Normal University Guangzhou 510515 China

Abstract

AbstractLiquid crystal elastomer (LCE) photoactuators offer a versatile platform for executing complicated tasks through precisely controlled bending directions and amplitudes. Optical waveguides assist photoactuators to perform tasks unimpededly. While most existing optical waveguide actuators are limited to unidirectional bending, limiting their versatility. Here, a LCE actuator integrated with a tapered optical fiber with controllable bending directions and amplitudes is presented. The LCE actuator displays bending motions induced by uneven shrinkage due to the off‐center fiber. The bending directions are parallel to the previous uniaxial alignment of the LCE film, which can be adjusted to an arbitrary angle with the tapered optical fiber. The LCE actuators exhibit adaptable bending directions at 0°, 45°, and 90°, representing the possible bending motions. The bending amplitudes are regulated by infrared laser power. A hook‐like LCE actuator with 0° bending direction carried the handle of a basket. In addition, a 90° bending direction LCE actuator displays the shrinkage behavior, showing a special bending motion control. Moreover, a bionic hand, comprising five LCE actuators with various bending directions, exhibited diverse gestures with precise control. The controllable bending motions in optical waveguide actuators expand the promising applications in complicated scenarios, such as catheters or other medical devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3