Large Biaxial Recovered Strains in Self‐Shrinking 3D Shape‐Memory Polymer Parts Programmed via Printing with Application to Improve Cell Seeding

Author:

Pieri Katy1,Liu Di2,Soman Pranav1,Zhang Teng2,Henderson James H.1ORCID

Affiliation:

1. BioInspired Syracuse: Institute for Material and Living Systems Department of Biomedical and Chemical Engineering Syracuse University Syracuse NY 13244 USA

2. BioInspired Syracuse: Institute for Material and Living Systems Department of Mechanical and Aerospace Engineering Syracuse University Syracuse NY 13244 USA

Abstract

AbstractTrapping of strain in layers deposited during extrusion‐based (fused filament fabrication) 3D printing has previously been documented. If fiber‐level strain trapping can be understood sufficiently and controlled, 3D shape‐memory polymer parts could be simultaneously fabricated and programmed via printing (programming via printing; PvP), thereby achieving precisely controlled 3D‐to‐3D transformations of complex part geometries. Yet, because previous studies have only examined strain trapping in solid printed parts—such as layers or 3D objects with 100% infill—fundamental aspects of the PvP process and the potential for PvP to be applied to printing of porous 3D parts remain poorly understood. This work examines the extent to which strain can be trapped in individual fibers and in fibers that span negative space and the extent to which infill geometry affects the magnitude and recovery of strain trapped in porous PvP‐fabricated 3D parts. Additionally, multiaxial shape change of porous PvP‐fabricated 3D parts are for the first time studied, modeled, and applied in a proof‐of‐concept application. This work demonstrates the feasibility of strain trapping in individual fibers in 1D, 2D, and 3D PvP‐fabricated parts and illustrates the potential for PvP to provide new strategies to address unmet needs in biomedical and other fields.

Funder

National Institute of General Medical Sciences

National Science Foundation

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3