Spike‐based Self‐Calibration for Enhanced Accuracy in Self‐powered Pressure Sensing

Author:

Han Chankyu1,Choi Jungrak1,Ahn Junseong12,Kim Hyunjin1,Ha Ji‐Hwan12,Han Hyeonseok1,Cho Seokjoo1,Jeong Yongrok12,Gu Jimin1,Park Inkyu1ORCID

Affiliation:

1. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro Yuseong‐gu Daejeon 34141 South Korea

2. Department of Nano Manufacturing Technology Korea Institute of Machinery and Materials (KIMM) 156 Gajeongbuk‐ro Yuseong‐gu Daejeon 34103 South Korea

Abstract

AbstractSelf‐powered pressure sensors are gaining popularity in human–machine interaction and mobile systems for their energy efficiency. Among the many types of self‐powered sensors, triboelectric sensors have numerous advantages, including diversity of materials, ease of fabrication, and high voltage output. However, their signal is prone to be affected by both intrinsic and extrinsic factors including environmental change and discharging, which can significantly deteriorate the accuracy of measurement. To address this, a simple yet effective solution is proposed: a mechanically induced spike‐based self‐calibration method for a triboelectric pressure sensor. The sensor generates two signals: an open‐circuit voltage and a spiking calibration voltage, enabling real‐time calculation of current surface charge density. The calibration signal generates a spike at each predetermined discrete pressure change, whether positive or negative direction, denoting the corresponding direction of the pressure variation. This system successfully calibrates signals from various effects, including humidity change (20%–80%), discharging (over 10 days), and charge accumulation. This sensor has potential applications in precision agriculture for efficient crop harvesting and packaging in diverse environmental conditions.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3