Affiliation:
1. State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science Fudan University Shanghai 200438 China
2. Guangzhou Moxi Technology Co Ltd. Guangzhou 510535 China
3. Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 China
4. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 China
Abstract
AbstractThe lifespan of proton‐exchange membrane fuel cells heavily relies on the durability of the carbon support of cathode catalysts. However, commercial carbon supports like ketjenblack (KB) and Vulcan carbon (VC) face the challenge of balancing porosity, surface area, and electrochemical stability. To address this issue, a 3D porous wrinkled graphitic carbon (PWGC) is designed and synthesized using a catalyst‐free, plasma‐enhanced chemical vapor deposition approach. The resulting PWGC possesses a hierarchically porous structure with a high surface area, a high degree of graphitization, and exceptional corrosion resistance. As a result, the Pt/PWGC catalysts with the use of PWGC as the carbon support demonstrate superior high potential stability compared to those made with KB and VC as the carbon support. Additionally, a sacrificial layer strategy is introduced to further reduce PWGC corrosion, resulting in Pt@C/PWGC catalysts that show significantly improved durability in membrane electrode assembly tests. After 5K voltage cycles from 1.0 to 1.5 V, the retention of electrochemically active surface area approaches 56.8%, surpassing the 23.6% retention of commercial Pt/C catalysts tested under the same conditions.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献