Green Fabrication of Stackable Laser‐Induced Graphene Micro‐Supercapacitors under Ambient Conditions: Toward the Design of Truly Sustainable Technological Platforms

Author:

Silvestre Sara L.1ORCID,Morais Maria1ORCID,Soares Raquel R. A.2ORCID,Johnson Zachary T.2ORCID,Benson Eric3ORCID,Ainsley Elisabeth3,Pham Veronica3,Claussen Jonathan C.2ORCID,Gomes Carmen L.2ORCID,Martins Rodrigo1ORCID,Fortunato Elvira1ORCID,Pereira Luis1ORCID,Coelho João145ORCID

Affiliation:

1. CENIMAT i3N Department of Materials Science School of Science and Technology NOVA University Lisbon and CEMOP/UNINOVA Caparica Portugal

2. Department of Mechanical Engineering Iowa State University Ames IA 50011 USA

3. School of Art + Design Graphic Design Program University of Illinois Urbana‐Champaign Champaign IL 61820 USA

4. Dpto. Física de la Materia Condensada Universidad de Sevilla Avda. Reina Mercedes S/N Sevilla 41012 Spain

5. Instituto de Ciencia de Materiales de Sevilla (Universidad de Sevilla‐CSIC) Avda. Americo Vespucio 49 Sevilla 41092 Spain

Abstract

AbstractExtensive research into green technologies is driven by the worldwide push for eco‐friendly materials and energy solutions. The focus is on synergies that prioritize sustainability and environmental benefits. This study explores the potential of abundant, non‐toxic, and sustainable resources such as paper, lignin‐enriched paper, and cork for producing laser‐induced graphene (LIG) supercapacitor electrodes with improved capacitance. A single‐step methodology using a CO2 laser system is developed for fabricating these electrodes under ambient conditions, providing an environmentally friendly alternative to conventional carbon sources. The resulting green micro‐supercapacitors (MSCs) achieve impressive areal capacitance (≈7–10 mF cm−2) and power and energy densities (≈4 μW cm‐2 and ≈0.77 µWh cm−2 at 0.01 mA cm−2). Stability tests conducted over 5000 charge–discharge cycles demonstrate a capacitance retention of ≈80–85%, highlighting the device durability. These LIG‐based devices offer versatility, allowing voltage output adjustment through stacked and sandwich MSCs configurations (parallel or series), suitable for various large‐scale applications. This study demonstrates that it is possible to create high‐quality energy storage devices based on biodegradable materials. This development can lead to progress in renewable energy and off‐grid technology, as well as a reduction in electronic waste.

Funder

National Science Foundation

Junta de Andalucía

HORIZON EUROPE Framework Programme

Publisher

Wiley

Reference48 articles.

1. Biodegradable Materials and Green Processing for Green Electronics

2. C. P.Baldé R.Kuehr T.Yamamoto R.McDonald S.Althaf G.Bel O.Deubzer E.Fernandez‐Cubillo V.Forti V.Gray S.Herat S.Honda G.Iattoni D. S.Khetriwal V. L. d.Cortemiglia International Telecomunication Union (ITU) and United Nations Institute for Training and Research (UNITAR) https://www.itu.int/itu‐d/sites/environment(accessed: April 2004).

3. Impact of E-Waste Toxicity on Health and Nature: Trends, Biases, and Future Directions

4. Green Flexible Electronics: Natural Materials, Fabrication, and Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3