Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone

Author:

Jeon Sera1,Meng Xiangchun1,Rubab Najaf2,Kim Dabin3,Mo Hyeon1,Xiao Xiao1,Park Min Jae1,Cho Daniel Sanghyun3,Kim Seong Min1,Choi Byung‐Ok4,Kim Sang‐Woo1ORCID

Affiliation:

1. Department of Materials Science and Engineering Center for Human‐oriented Triboelectric Energy Harvesting Yonsei University Seoul 03722 Republic of Korea

2. Department of Materials Science and Engineering Gachon University Seongnam 13120 Republic of Korea

3. School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

4. Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul 06351 Republic of Korea

Abstract

AbstractImplantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound‐driven TENG (IU‐TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU‐TENG remarkably surpasses traditional titanium‐based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron‐donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body‐safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU‐TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.

Funder

National Research Foundation of Korea

Yonsei University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3