A Stiff‐Soft Composite Fabrication Strategy for Fiber Optic Tethered Microtools

Author:

Kaufman Georgia1,Jimenez Jorge2,Bradshaw Alyssa2,Radecka Adia2,Gallegos Michael1,Kaehr Bryan1,Golecki Holly2ORCID

Affiliation:

1. Advanced Materials Laboratory Sandia National Laboratories Albuquerque NM 87106 USA

2. Bioengineering Department, Grainger College of Engineering University of Illinois at Urbana Champaign Urbana IL 61801 USA

Abstract

AbstractThe ability to capture, manipulate, and release microscale objects using autonomous systems can enable widespread applications—from microsurgery and selective cell extraction to the assembly of complex microdevices. With continuing development of smart and environmentally responsive materials compatible with 3D printing, microgrippers with environmental adaptability can give rise to biocompatible devices. In this paper, the design, fabrication, and testing of hybrid stiff‐soft microgrippers using compliant synthetic polymers and hydrogels to achieve autonomous actuation while avoiding an overly complex mechanical gripping system are described. Building microgrippers using 2‐photon polymerization additive manufacturing based on nonplanar, bioinspired architectures on the end of an optical fiber is investigated. To control actuation, current regulated growth of hydrogels within the printed architecture is demonstrated. Forces are generated by expansive gels actuated by changes in pH, temperature, and application of light via optical fiber. The resulting multimaterial actuators incorporate inert skeletal components with active hydrogels on the tip of a 200 µm diameter core fiber. The response time, accuracy, and cyclic durability of hybrid grippers are evaluated. This work provides a foundation to integrate stimuli‐responsive mechanical functions with microscale optical devices to expand the suite of tools available for minimally invasive surgical procedures.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free-Form Liquid Crystal Elastomers via Embedded 4D Printing;ACS Applied Materials & Interfaces;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3