Affiliation:
1. Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
2. Organic Chemistry Institute Heidelberg University Im Neuenheimer Feld 270 29120 Heidelberg Germany
3. Institute of Applied Mechanics University of Stuttgart Pfaffenwaldring 7 70569 Stuttgart Germany
4. Stuttgart Center for Simulation Science University of Stuttgart Pfaffenwaldring 5a 70569 Stuttgart Germany
Abstract
AbstractAdvances in soft robotics strongly rely on the development and manufacturing of new responsive soft materials. In particular, light‐based 3D printing techniques, and especially, digital light processing (DLP), offer a versatile platform for the fast manufacturing of complex 3D/4D structures with a high spatial resolution. In this work, DLP all‐printed bilayered structures exhibiting reversible and multi‐responsive behavior are presented for the first time. For this purpose, liquid crystal elastomers (LCEs) are used as active layers and combined with a printable non‐responsive elastomer acting as a passive layer. Furthermore, selective light response is incorporated by embedding various organic dyes absorbing light at different regimes in the active layers. An in‐depth characterization of the single materials and printed bilayers demonstrates a reversible and selective response. Last, the versatility of the approach is shown by DLP printing a bilayered complex 3D structure consisting of four different materials (a passive and three different LCE active materials), which exhibit different actuation patterns when irradiated with different wavelengths of light.
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献