A Photo‐Thermoelectric Twist to Wireless Energy Transfer: Radial Flexible Thermoelectric Device Powered by a High‐Power Laser Beam

Author:

Maia Margarida1,Pires Ana L.1,Rocha Mariana1,Ferreira‐Teixeira Sofia1,Robalinho Paulo2,Frazão Orlando2,Furtado Cristina3,Califórnia António3,Machado Vasco3,Bogas Sarah3,Ferreira César3,Machado João3,Sousa Luís3,Luis Uxia G.4,San-Juan Alejandro M. G.4,Crespo Pedro O.4,Medina Fermin N.4,Sande Carlos U.4,Marino Alejandro C.4,González Guillermo R.4,Pereira Andreia T.5,Agelet Fernando A.4,Jamier Raphael6,Roy Philippe6,Leconte Baptiste6,Auguste Jean‐Louis6,Pereira André M.1ORCID

Affiliation:

1. IFIMUP, Institute of Physics for Advanced Materials, Nanotechnology and Photonics Department of Physics and Astronomy Faculty of Sciences of the University of Porto Porto Portugal

2. INESC TEC, Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência R. Dr. Roberto Frias Porto Portugal

3. CeNTI, Centre for Nanotechnology and Smart Materials R. Fernando Mesquita Vila Nova de Famalicão 4760-034 Portugal

4. University of Vigo Vigo (Pontevedra) 36310 Spain

5. i3S, Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208 Porto 4200‐135 Portugal

6. University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges 123 Avenue Albert Thomas Limoges Cedex 87060 France

Abstract

AbstractSystems for wireless energy transmission (WET) are gaining prominence nowadays. This work presents a WET system based on the photo‐thermoelectric effect. With an incident laser beam at λ = 1450 nm, a temperature gradient is generated in the radial flexible thermoelectric (TE) device, with a carbon‐based light collector in its center to enhance the photoheating. The three‐part prototype presents a unique approach by using a radial TE device with one simple manufacturing process ‐ screen‐printing. A TE ink with a polymeric matrix of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate and doped‐Poly(vinyl alcohol) with Sb‐Bi‐Te microparticles is developed (S∽33 µVK−1 and s∽10.31 Sm−1), presenting mechanical and electrical stability. Regarding the device, a full electrical analysis is performed, and the influence of the light collector is investigated using thermal tests, spectrophotometry, and numerical simulations. A maximum output voltage (Vout) of ∽16 mV and maximum power density of ∽25 µWm−2 are achieved with Plaser = 2 W. Moreover, the device's viability under extreme conditions is explored. At T∽180 K, a 25% increase in Vout compared to room‐temperature conditions is achieved, and at low pressures (∽10‒6 Torr), an increase of 230% is obtained. Overall, this prototype allows the supply of energy at long distances and remote places, especially for space exploration.

Funder

Fundação para a Ciência e a Tecnologia

Federación Española de Enfermedades Raras

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3