Gradient‐Interpenetrating Polymer Networks in 3D Printed Lattices for Tunable and Enhanced Energy Absorption

Author:

Sampson Kathleen L.1ORCID,Li Hao1,Laqua Kurtis2,Aranguren van Egmond Derek2ORCID,Dickson Laura E.1,Barroeta Robles Julieta3ORCID,Lamouche Justin3,Guthrie Aria3,Ashrafi Behnam3,Zou Shan4,Chen Maohui4,Bell Joshua1,Paquet Chantal1ORCID

Affiliation:

1. Security and Disruptive Technologies Research Centre National Research Council Canada 100 Sussex Drive Ottawa Ontario K1N 5A2 Canada

2. Advanced Materials Research Facility, Energy, Mining and Environment Research Centre National Research Council Canada 2620 Speakman Drive Mississauga Ontario L5K 1B4 Canada

3. Aerospace Research Centre National Research Council Canada 2107 chemin de la Polytechnique Montréal Quebec H3T 1J4 Canada

4. Metrology Research Centre National Research Council Canada 100 Sussex Drive Ottawa Ontario K1N 5A2 Canada

Abstract

Abstract3D printing provides the potential to enhance mechanical properties by fabricating complex structures with diverse materials; however, most high‐resolution 3D printing techniques require custom printers to incorporate multiple materials and/or result in poor material interfacial bonding. Here, energy absorption properties are enhanced with 3D lattice structures fabricated via vat photopolymerization comprising multiple materials forming a gradient‐interpenetrating polymer network (gradient‐IPN). The gradient‐IPN is incorporated by swelling the 3D printed elastomeric lattice in a photoresin that yields a stiff shell‐soft core structure. This straightforward post‐3D printing technique delivers an unprecedented degree of structural property customization through polymer gradients in lattice struts with shells of tunable stiffness and flexible elastomeric cores to achieve a broad continuum spectrum of mechanical properties within one simple system. The gradient aids in the distribution of stress and limits fracture between materials typically observed in multimaterial lattices. The gradient‐IPN lattices are fully recoverable and exhibit over 4 to 33 times higher toughness after compression, compared to copolymer (same composition as the gradient‐IPN) or purely elastomeric lattices, respectively. This highly versatile approach to modifying 3D printed lattices yields the unique combination of load bearing capabilities with viscoelasticity desirable for high performance materials in impact protection.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3