Affiliation:
1. Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
2. University of Chinese Academy of Sciences Beijing 100049 P. R. China
Abstract
AbstractAlthough several efforts were made to develop high‐performance thermoelectric (TE) composites by a combination of single‐walled carbon nanotubes (SWCNTs) with a high conductivity and tellurium (Te) with a large Seebeck coefficient, only a very limited advance has been achieved because of their intrinsic interfacial incompatibility. In this work, a range of SWCNT/polypyrrole (PPy)/Te flexible composite films are prepared through sequentially pulse electrodepositing PPy and Te over the prefabricated SWCNT membrane electrode, where both the introduction of the PPy sandwich layer and the adoption of two pulse electrodepositions play a vital role in ameliorating the TE performance of the composites via the synergic optimization of an interfacial engineering. Consequently, the best power factor for the optimal SWCNT/PPy/Te composite film reaches up to 1602.4 ± 87.6 µW m−1 K−2 at 300 K, which hits the record for the p‐type PPy‐based TE composites. Moreover, the five‐leg flexible thermoelectric generators assembled with the optimal film harvest an output power of 1512.5 nW at the applied temperature difference of 22.4 K. This work suggests that the multilayer assembly technology driven by pulse electrochemistry is a feasible and effective tactic for architecting high‐performance flexible TE films.
Funder
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献