Autonomous Output‐Oriented Aerosol Jet Printing Enabled by Hybrid Machine Learning

Author:

Du Yipu1,Jiang Meng2,Zhang Yanliang1ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN 46556 USA

2. Department of Computer Science and Engineering University of Notre Dame Notre Dame IN 46556 USA

Abstract

AbstractAdditive manufacturing (AM) is rapidly revolutionizing modern manufacturing with recent progress in advanced printing methods and improved properties of printed materials. However, traditional AM methods are limited by their input‐oriented nature, which demands tedious trial‐and‐error tuning of printing parameters to achieve desired output properties. Here, an output‐oriented artificial intelligence‐integrated AM (AIAM) method is reported that enables an user to specify desired output properties while the printer autonomously discovers the optimal input printing parameters by integrating hybrid machine learning models and in situ measurements. Based on a predictive mapping between the input printing parameters and the output properties of interests established with <20 experiments designed by active learning, inverse design tasks are performed to intelligently generate the printing parameter settings that lead to desired outcomes using reinforcement learning. This method is demonstrated by autonomous aerosol jet printing (AJP) of conductive polymer films and achieving user‐defined electrical resistances with an ultralow error of 3.7%. The AIAM method, with its output‐oriented nature, holds the potential to significantly improve the autonomy, predictability, efficiency, and accessibility of the AM processes, which will unlock new possibilities in the autonomous and intelligent printing of a broad range of functional materials and devices.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3