Potential of Aluminum as a Metal Fuel for Supporting EU Long‐Term Energy Storage Needs

Author:

Barelli Linda1,Trombetti Lorenzo1,Zhang Shuting2,Ersoy Hüseyin34ORCID,Baumann Manuel3ORCID,Passerini Stefano235ORCID

Affiliation:

1. Universitá Degli Studi Di Perugia (UNIPG) Piazza dell'Università 1 Perugia 06123 Italy

2. Chemistry Department Sapienza University of Rome Piazzale A. Moro 5 Rome 00185 Italy

3. Institute for Technology Assessment and System Analysis (ITAS) Karlsruhe Institute of Technology (KIT) Karlstraße 11 76021 Karlsruhe Germany

4. CENSE – Center for Environmental and Sustainability Research, NOVA School of Science and Technology NOVA University Lisbon Lisbon Portugal

5. Helmholtz Institute Ulm for Electrochemical Energy Storage Karlsruhe Institute of Technology (KIT) Helmholtz Straße 11 89081 Ulm Germany

Abstract

AbstractThe EU's energy transition necessitates availability of green energy carriers with high volumetric energy densities for long‐term energy storage (ES) needs. A fully decarbonized scenario considering renewable energy availability is analyzed underpinning the need for such carriers. Considering the shortcomings of Power‐to‐X technologies in terms of efficiency and low volumetric density, Aluminum (Al) is identified as a potential alternative showing significantly high volumetric energy densities (23.5 kWh L−1). In this paper, an Al‐based long‐term ES concept is investigated, taking advantage of the inherent recycling of the active species (i.e., Al2O3 to Al) coupling decarbonized Hall–Héroult process with an Al‐steam oxidation for simultaneous hydrogen (H2) and heat generation. This work demonstrates an innovative lab‐scale fine Al powder‐steam oxidation process at ≈900 °C without use of catalysts or additives, exploiting alumina as inert material. Conducted SEM‐EDX analysis on oxidized Al provides supporting evidence in favor of employed oxidation pathway, hindering tendency of aluminum oxide (Al2O3) clumping and enabling direct use of oxides in the smelting process for fully recyclability. Moreover, outcomes of XRD analyses are presented to validate the measured total H2 yields.

Funder

Horizon 2020 Framework Programme

Helmholtz Association

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3