Intervertebral Disc‐on‐a‐ChipMF: A New Model for Mouse Disc Culture via Integrating Mechanical Loading and Dynamic Media Flow

Author:

Xie Wanqing1,Xing Yuan12,Xiao Li1ORCID,Zhang Pu3,Oh Richard1,Zhang Yangpu14,Yu Xiaoyu2,He Yi2,Oh Eunha G1,Cao Ruofan5,Ramasubramanian Melur K3,Wang Yong6,Jin Li1,Oberhozler Jose6,Li Xudong17ORCID

Affiliation:

1. Department of Orthopaedic Surgery University of Virginia Charlottesville VA 22908 USA

2. Department of Surgery University of Virginia 345 Cripell Drive Charlottesville VA 22908 USA

3. Department of Mechanical and Aerospace Engineering University of Virginia 122 Engineer's Way Charlottesville VA 22904 USA

4. Department of Orthopaedic Surgery Beijing Chaoyang Hospital Capital Medical University Beijing 100069 China

5. Department of BioMolecular Science University of Mississippi Oxford MS 38677 USA

6. Department of Visceral Surgery and Transplantation University of Zurich Hospital Zürich 8091 Switzerland

7. Department of Biomedical Engineering University of Virginia Charlottesville VA 22904 USA

Abstract

This study aims to develop an ex vivo organ‐on‐a‐chip model, intervertebral Disc‐on‐a‐ChipMF, to investigate integrated effects of mechanical loading and nutrition on disc health. The system consists of a detachable multilayer microfluidic chip, a Computer‐Arduino‐based control system, and a mechanical loading unit, which are optimized for accurate axial force measurement and the maintenance of a 21‐day ex vivo disc culture. To ensure accuracy of axial force, the axial mechanical loading regimen is optimized, using the Computer‐Arduino‐based system and low‐profile force sensors (LPFS) to control the mechanical loading unit, and the force distribution on the disc surface is modeled by computational simulation. A 21‐day ex vivo disc culture is demonstrated using the Disc‐on‐a‐ChipMF system, with optimized mechanical loading (0.02 MPa at 1Hz, 1.5 hr day−1) and flow rate (1 µL min−1). The structural integrity, collagen breakdown, catabolic enzyme activities, and disc cell and collagen alignment reveal that the on‐chip cultured discs exhibit a preferred disc health similar to that of native discs for up to 21 days, while discs in a static culture show degenerative changes. The mouse Disc‐on‐a‐ChipMF system mimics in vivo disc microenvironment and provides a valuable platform for studying the effects of various factors on disc health and degeneration and testing new therapies.

Funder

North American Spine Society

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3