Liquid‐Metal‐Based Soft Pressure Sensor and Multidirectional Detection by Machine Learning

Author:

Gul Osman12ORCID,Kim Jeongnam23,Kim Kyuyoung1,Kim Hye Jin23,Park Inkyu1ORCID

Affiliation:

1. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Intelligent Components and Sensors Research Section Electronics and Telecommunication Research Institute (ETRI) 218 Gajeong‐ro, Yuseong‐gu Daejeon 34129 Republic of Korea

3. Department of Advanced Device Technology University of Science and Technology Daejeon 34113 Republic of Korea

Abstract

AbstractElectronic skin (e‐skin) is an emerging technology with promising applications in various fields, including human–machine interfaces, prosthetics, and robotics. Soft and flexible sensors are vital components for the e‐skin that can mimic human skin's sensing capabilities. Among soft sensors, liquid‐metal‐based sensors have gained attention owing to their unique properties, such as high electrical conductivity, stretchability, and elasticity. Herein, a novel approach is presented that enables multidirectional pressure sensing with a machine‐learning approach from the transient response of the liquid‐metal‐based soft pressure sensor for the e‐skins. In this study, a soft sensor is developed that utilizes liquid metal and has an array of microchannels on a dome‐shaped structure to detect pressures from multiple directions. The transient response from six microchannels of the sensor is used as the input for a convolutional neural network (CNN) to predict the direction (classification accuracy of 99.1%) and magnitude (regression error of 20.13%) of the applied pressures in real time. Finally, a potential application of the developed liquid‐metal‐based soft sensor as a human–machine interface device is demonstrated by using it to control an RC model car through multidirectional predictions (pressure direction and magnitude) through machine learning in real time.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

Ministry of Culture, Sports and Tourism

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3