Spatial‐Selective Volumetric 4D Printing and Single‐Photon Grafting of Biomolecules within Centimeter‐Scale Hydrogels via Tomographic Manufacturing

Author:

Falandt Marc1ORCID,Bernal Paulina Nuñez2ORCID,Dudaryeva Oksana2ORCID,Florczak Sammy2,Größbacher Gabriel2ORCID,Schweiger Matthias1,Longoni Alessia2ORCID,Greant Coralie34,Assunção Marisa2ORCID,Nijssen Olaf1,van Vlierberghe Sandra34ORCID,Malda Jos12ORCID,Vermonden Tina5ORCID,Levato Riccardo12ORCID

Affiliation:

1. Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT The Netherlands

2. Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX The Netherlands

3. Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000 Belgium

4. BIO INX BV Technologiepark‐Zwijnaarde 66 Ghent 9052 Belgium

5. Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht 3584CG The Netherlands

Abstract

AbstractConventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light‐based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom‐designed geometries even across large, centimeter‐scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 µm). Thiol–ene click chemistry allows on‐demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 µm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region‐dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.

Funder

ReumaNederland

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3