A Minimalistic, Synthetic Cell‐Inspired Metamaterial for Enabling Reversible Strain‐Stiffening

Author:

Taale Mohammadreza1,Schmidt Målin1,Taheri Fereydoon1,Timmermann Michael2,Selhuber‐Unkel Christine1ORCID

Affiliation:

1. Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Heidelberg University 69120 Heidelberg Germany

2. Institute for Materials Science Kiel University 24143 Kiel Germany

Abstract

AbstractStrain‐stiffening, i.e. the nonlinear stiffening of a material in response to a strain, is an intrinsic feature of many biological systems, including skin, blood vessels, and single cells. To avoid a mismatch in mechanical properties, synthetic materials in contact with such biological systems should also be strain‐stiffening. Conventional strain‐stiffening materials are either highly dependent on the applied strain‐rate, or only available for a limited stiffness regime. Both aspects limit the applicability of these materials. In contrast, living cells employ a dynamic strain‐stiffening mechanism that is based on the cross‐linking of cytoskeletal fibers in response to external stress. This strain‐stiffening of the cytoskeleton is mimicked in a mechanical metamaterial by a minimalistic structure consisting of parallel slats connected to backbones. Herein, it is demonstrated experimentally that the structures can be adapted such that the strain required for stiffening, the final stiffness, as well as the degree of stiffening can be tuned, particularly by combining several strain‐stiffening elements. These properties make the structure promising for the development of devices that should resemble the mechanical properties of human soft tissues, e.g., skin‐integrated flexible electronics and blood vessel grafts.

Funder

European Research Council

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3