Acoustofluidics: A Versatile Tool for Micro/Nano Separation at the Cellular, Subcellular, and Biomolecular Levels

Author:

Zhao Zhuyang1,Yang Sha1,Feng Liu1,Zhang Ligai1,Wang Jue1,Chang Kai1,Chen Ming123ORCID

Affiliation:

1. Department of Clinical Laboratory Medicine Southwest Hospital Army Medical University 30 Gaotanyan, Shapingba District Chongqing 400038 China

2. College of Pharmacy and Laboratory Medicine Army Medical University 30 Gaotanyan, Shapingba District Chongqing 400038 China

3. State Key Laboratory of Trauma Burn and Combined Injury Army Medical University 30 Gaotanyan, Shapingba District Chongqing 400038 China

Abstract

AbstractSeparation of micro/nanoparticles, such as cellular, subcellular and biomolecular, has attracted increasing attention because of their remarkable potential applications in various fields, including chemistry, physics, medicine, etc. Among different micro/nanoparticle separation methods, acoustofluidics, which combines acoustics and microfluidics, has drawn the interest of researchers due to its biocompatibility, high efficiency and free labeling. In this review, the basic constitutions, mechanisms, and materials of acoustofluidics are described. Subsequently, sorts of delicately designed acoustofluidic devices, including diverse bulk acoustic wave (BAW) microfluidics and surface acoustic wave (SAW) microfluidics, are discussed, covering principles, advantages, limitations and applications in separation. Besides the introduction of advances of micro/nanoparticle separation in the BAW microfluidics, the SAW microfluidics are elaborated in detail with a focus on various configurations of interdigital transducers (IDTs), comprising straight IDT, slanted‐finger IDT, chirped IDT and focused IDT. Microfluidic systems of the acoustofluidics involve the forms of straight channels, serpentine channels, and droplets. Additionally, besides simply structured acoustofluidics, acoustofluidics integrated with other structures are also mentioned. Finally, the prospects and limitations of acoustofluidics in micro/nanoparticle separation are also discussed. The acoustofluidics reviewed here is envisioned as a versatile tool for micro/nanoparticle separation at the cellular, sub‐cellular, and biomolecular levels.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3