3D Printing of Porous Degradable Scaffolds with Polylactic Acid‐Loaded Bioactive Glass and Calcium Sulfate Hemihydrate for Bone Defect Repair

Author:

Hu Huiqiang12ORCID,Zhao Zheng3,Sun Yanni2,Zhao Jiawei4,Chen Zhengqian1,Li Jianyi2,Kong Weiqing1,Du Yukun1,Shao Jiale2,Zhu Xiaoyang4ORCID,Lan Hongbo4,Xi Yongming2

Affiliation:

1. Department of Orthopedic Surgery Qingdao University Medical College Qingdao 266071 China

2. Department of Orthopedic Surgery The Affiliated Hospital of Qingdao University Qingdao 266035 China

3. Department of Orthopedics Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital Yantai 264001 China

4. Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology Qingdao 266520 China

Abstract

AbstractRepair of bone defects, especially critical‐sized bone defects, remains a major clinical problem, and bone nonunion is the biggest challenge. Herein, melt‐extrusion 3D printing is applied to prepare biodegradable composite scaffolds containing bioactive glass (BAG), calcium sulfate hemihydrate (CSH), and polylactic acid (PLA). The compressive strength of scaffolds is similar to that of human bone tissue. In vitro and in vivo experiments show that the scaffolds have good biocompatibility. The scaffold can maintain the biomechanical stability of the bone defect area during the follow‐up period of 20 weeks and has no damage to liver and kidney in animal experiments. Scaffold degradation is accompanied by trabecular bone and vessel neogenesis. While the PLA group and control group cannot carry out effective bone defect repair, the bone defect repair effect of the PLA‐CSH‐BAG group is satisfactory. In conclusion, the biodegradable porous scaffold has been proposed as a safe and effective approach for the repair of bone defects.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3