A Stretchable and Strain‐Limiting, Bio‐Inspired Nanofiber‐Reinforced Microfiber for Wearable Electronics

Author:

Hanif Adeela1,Park Junho2,Kim Dohui1,Youn Jaeseung1,Jeong Unyong2,Kim Dong Sung1345ORCID

Affiliation:

1. Department of Mechanical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 South Korea

2. Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongsangbuk‐do 37673 South Korea

3. Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 South Korea

4. Institute for Convergence Research and Education in Advanced Technology Yonsei University Seoul 03722 South Korea

5. School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 South Korea

Abstract

AbstractWith existing fiber‐based approaches for wearable electronics, devices with limited stretchability are not fully protected against large stretching when the wearer is participating in vigorous activities. A network of elastin and collagen fibers makes biological tissues elastic at low strains and strain‐limiting at high strains, showing a J‐shaped stress‐strain behavior. Stretchable systems can replicate a “J‐shaped stress‐strain/strain‐limiting” mechanical behavior of biological tissues under deformations and provide mechanical compliance and comfort to wearers. For mimicking this mechanical behavior of biological tissues, he developed a combined microfiber and nanofiber (NF)‐based approach. The soft polyurethane (PU) microfiber mimicking elastin of biological tissue is wrapped with stiff poly(vinylidene fluoride)(PVDF) NFs, mimicking collagen in tissue, and dip coated in polydimethylsiloxane (PDMS). Confocal images during stretching confirmed that the PU microfiber maintained stretchability, while the stiff PVDF NFs played a role in the strain‐limiting characteristics. By tailoring a loading ratio of the PVDF NFs on the PU microfiber, the elastic modulus is matched well with those of biological tissues. The stretchable conducting coating and temperature sensor on the bio‐inspired microfiber showed a negligible difference in a current‐time (I‐T) response during static and dynamic stretching which indicated the efficient absorption of stress by the bio‐inspired microfiber.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3