Electrical Conductivity and Photodetection in 3D‐Printed Nanoporous Structures via Solution‐Processed Functional Materials

Author:

Xia Kai12ORCID,Dong Zheqin34ORCID,Sun Qing5ORCID,Debastiani Rafaela67ORCID,Liu Sida34ORCID,Jin Qihao1ORCID,Li Yang18ORCID,Paetzold Ulrich W.18ORCID,Gumbsch Peter69ORCID,Lemmer Uli128ORCID,Eggeler Yolita M.5ORCID,Levkin Pavel A.34ORCID,Hernandez‐Sosa Gerardo128ORCID

Affiliation:

1. Light Technology Institute (LTI) Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany

2. InnovationLab Speyerer Strasse 4 69115 Heidelberg Germany

3. Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

4. Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Kaiserstrasse 12 76131 Karlsruhe Germany

5. Microscopy of Nanoscale Structures & Mechanisms (MNM) Laboratory for Electron Microscopy (LEM) Karlsruhe Institute of Technology (KIT) Engesserstrasse 7 76131 Karlsruhe Germany

6. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

7. Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

8. Institute of Microstructure Technology (IMT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

9. Fraunhofer Institute for Mechanics of Materials IWM Wöhlerstrasse 11 79108 Freiburg Germany

Abstract

Abstract3D‐printed conductive structures are highly attractive due to their great potential for customizable electronic devices. While the traditional 3D printing of metal requires high temperatures to sinter metal powders or polymer/metal composites, low or room temperature processes will be advantageous to enable multi‐material deposition and integration of optoelectronic applications. Herein, digital light processing technology and inkjet printing are combined as an effective strategy to fabricate customized 3D conductive structures. In this approach, a 3D‐printed nanoporous (NPo) polymeric material is used as a substrate onto which a nanoparticle‐based Ag ink is printed. SEM and X‐ray nano computed tomography (nanoCT) measurements show that the porous morphology of the pristine NPo is retained after deposition and annealing of the Ag ink. By optimizing the deposition conditions, conductive structures with sheet resistance <2 Ω sq−1 are achieved when annealing at temperatures as low as 100 °C. Finally, the integration of an inkjet‐printed photodetector is investigated based on an organic semiconductor active layer onto the NPo substrate. Thus, the potential of this approach is demonstrated for the additive manufacturing of functional 3D‐printed optoelectronic devices.

Funder

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3