Surface‐Engineered Liquid Metal Particles for Printing Stretchable Conductive Composites with Enhanced Stability Under Different Strain Rates

Author:

Chin Ren‐Mian12,Han Youngshang13,Malakooti Mohammad H.123ORCID

Affiliation:

1. Department of Mechanical Engineering University of Washington Seattle WA 98195 USA

2. Department of Materials Science & Engineering University of Washington Seattle WA 98195 USA

3. Institute for Nano‐Engineered Systems University of Washington Seattle WA 98195 USA

Abstract

AbstractIntegrating liquid metal (LM) particles into compliant polymers presents an innovative approach for developing intelligent and adaptable systems in stretchable electronics, wearable devices, soft robotics, and other emerging technologies. However, the inherent electrically insulative nature of these solid‐liquid composites, compounded by the gallium oxide shell surrounding LM droplets, poses a significant challenge in establishing conductive pathways, especially for small droplet sizes and ultrasoft elastomers. Here, an interface modification approach that addresses this bottleneck and enables the synthesis of highly stretchable and printable composites with LM microparticles (<2 µm) is presented. Polyvinylpyrrolidone (PVP) is used to functionalize these small LM inclusions, weakening the particle‐matrix interface, and facilitating the formation of a conductive percolating network under tensile strain. Optimized synthesis parameters result in printed conductive traces with excellent electrical conductivity (0.2 Ω cm−1), ultra‐high elongation at break (>900% strain), and minimal resistance change (≈131%). Furthermore, this comprehensive study of the electromechanical response of these stretchable conductors under various strain rates reveals their exceptional stability under dynamic loading conditions, surpassing the performance of conductive traces composed of sprayed liquid metal. Finally, the potential application of these multifunctional materials in stretchable circuitry, addressing the demand for high stretchability and stability in wearable electronics, is demonstrated.

Funder

Meta

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3