Affiliation:
1. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
Abstract
AbstractArchitected materials exhibit unique properties and functionalities based on the geometric arrangement of their constituent materials. In most cases, these parameters are fixed, requiring that the system be redesigned and reconstructed if different properties are desired. Both stimuli‐responsive materials and modular designs have been used to enable re‐programmable properties in the past, but often have limitations, such as the need for a continuous application of external stimuli or power, or unwanted global morphing. In this study, a locally stable anti‐tetra chiral (LSAT) metamaterial is introduced consisting of independently multistable units that can deform and change state without inducing changes in the global morphology. Adjacent cells are only weakly coupled, allowing the collective metamaterial to be switched between many different possible states. Local bistability enables re‐programmable heterogeneity, such as the snapping of cells along an edge or diagonally within the architected material. Utilizing finite element analysis (FEA), the influence of key geometric parameters on the re‐programmability of the metamaterials is systematically investigated. The effect of these parameters on properties such as shear stiffness, Poisson's ratio, and vibration are also investigated using experimental prototypes. This re‐programmable metamaterial promises to expand the design space for mechanical systems, with potential applications in non‐traditional computation, robotic actuation, and adaptive structures.
Funder
Air Force Office of Scientific Research
National Science Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献