Bioinks from All‐Natural Pickering Emulgels Co‐Stabilized by Cationic CNC and Inclusion Complexes Formed by α‐Cyclodextrin

Author:

Jaekel Esther E.1,Ajdary Rubina2,Holwell Nathan3,Mathew Sean3,Amsden Brian G.3,De France Kevin J.3,Rojas Orlando J.2,Antonietti Markus1,Filonenko Svitlana1ORCID

Affiliation:

1. Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14472 Potsdam Germany

2. Bioproducts Institute Department of Chemical and Biological Engineering Department of Chemistry and Department of Wood Science University of British Columbia 2360 East Mall Vancouver British Columbia V6T 1Z4 Canada

3. Department of Chemical Engineering Queen's University 19 Division Street Kingston Ontario K7L 2N9 Canada

Abstract

AbstractDirect ink writing is especially relevant to the biomedical field due to the customizable extrusion and the possibility of creating pre‐designed architectures. Abundant natural polymers are sustainable and biocompatible alternatives to synthetic and persistent polymers. The printing of pure nanocellulose suspensions proves difficult due to low solid loadings, high shrinkage, as well as non‐fitting rheology. Emulsion gels (emulgel) alternatives gain attention in the field owing to their favorable viscoelastic properties and the possibility of creating multiphase systems. The authors’ sulfur‐free cationic cellulose nanocrystals (CNC) of low degree of substitution enable straightforward deployment in Pickering emulsions. An emulgel ink co‐stabilized by cationic CNC and α‐cyclodextrin is introduced as an interfacial inclusion complex. All ink components are natural and biodegradable compounds. The produced emulgel inks allow for high fidelity printing and minimum shrinkage upon drying that relaxes the need for supports, even in complex overhanging structures. A low yield stress (230–270 Pa) facilitates the inclusion of cells for biomedical applications into the formulation. The emulgel can be tuned to the desired rheological properties and be equipped with both polar and apolar compounds due to the biphasic system, making it a promising platform for biocompatible additive manufacturing.

Funder

Max-Planck-Gesellschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3