Affiliation:
1. Multifunctional Organic Polymer Laboratory Future Convergence Engineering School of Energy, Materials and Chemical Engineering Korea University of Technology and Education 1600, Chungjeol‐ro Cheonan 31253 Republic of Korea
Abstract
AbstractElectrically reconfigurable lenses capable of focal adjustment and zooming require deformable adaptive optical components. However, existing electroactive optical devices that perform these functions are limited by fluid leakage or require complex mechanical parts. Although polyvinyl chloride (PVC) gel‐based lenses with variable focal lengths and zooming have recently been developed, focal adjustment can only be made in the horizontal axis. Herein, a PVC gel‐based adaptive microlens capable of controlling the focal length and focal point simultaneously in the vertical, horizontal, and diagonal directions without mechanical gears or liquid leakage is presented. By optimizing the characteristics of PVC gels plasticized with three different structured plasticizers, a PVC gel‐based adaptive microlens is fabricated. The produced microlens demonstrates the properties of multidirectional focal adjustment, variable focal length (+33.7 to −15.1 mm) at low input voltages (<300 V), excellent transparency (>90%), fast response (0.10 s at 100 V), silent operation, low power consumption (0.39 mW), and excellent potential for further miniaturization.
Funder
National Research Foundation of Korea
Ministry of Education
Ministry of Science and ICT, South Korea
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献