Rapid Design of Fully Soft Deployable Structures Via Kirigami Cuts and Active Learning

Author:

Ma Leixin12,Mungekar Mrunmayi1,Roychowdhury Vwani3,Jawed M.K.1ORCID

Affiliation:

1. Dept. of Mechanical and Aerospace Engineering University of California Los Angeles CA 90095 USA

2. School for Engineering of Matter, Transport & Energy Arizona State University Tempe AZ 85287 USA

3. Dept. of Electrical and Computer Engineering University of California Los Angeles CA 90095 USA

Abstract

AbstractSoft deployable structures – unlike conventional piecewise rigid deployables based on hinges and springs – can assume intricate 3‐D shapes, thereby enabling transformative soft robotic and manufacturing technologies. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse problem: fabrication of desired 3D structures requires manufacturing technologies with extensive local actuation and control, and a trial‐and‐error search over a large design space. Both of these shortcomings are addressed by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3‐D shapes by designing the appropriate kirigami cuts and the amount of prestretch (without any local control). Second, a data‐driven physics‐guided framework is formulated that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the “latent” parameter space in an active learning approach. The rapid design procedure is demonstrated via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Experiments and our numerical predictions are found to be in good agreement.

Funder

National Science Foundation

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3