AI‐Assisted Multimodal Breath Sensing System with Semiconductive Polymers for Accurate Monitoring of Ammonia Biomarkers

Author:

Weisbecker Hannah12ORCID,Shanahan Jordan3,Liu Yihan1,Zhang Lin1,Xie Wanrong1,McDow Samuel3,Lambert Noah3,Huang Amber2,Sopp Stephen1,You Wei3ORCID,Bai Wubin1ORCID

Affiliation:

1. Department of Applied Physical Sciences University of North Carolina Chapel Hill NC 27514 USA

2. Department of Biology University of North Carolina Chapel Hill NC 27514 USA

3. Department of Chemistry University of North Carolina Chapel Hill NC 27514 USA

Abstract

AbstractBreath ammonia is an essential biomarker for patients with many chronic illnesses, such as chronic kidney disease (CKD), chronic liver disease (CLD), urea cycle disorders (UCD), and hepatic encephalopathy. However, existing breath ammonia sensors fail to compensate for the impact of breath humidity and complex breathing motions associated with a human breath sample. Here, a multimodal breath sensing system is presented that integrates an ammonia sensor based on a thermally cleaved conjugated polymer, a humidity sensor based on reduced graphene oxide (rGO), and a breath dynamics sensor based on a 3D folded strain‐responsive mesostructure. The miniaturized construction and module‐based configuration offer flexible integration with a broad range of masks. Experimental results present the capabilities of the system in continuously detecting diagnostic ranges of breath ammonia under real, humid breath conditions with sufficient sensing accuracy and selectivity over 3 weeks. A machine‐learning algorithm based on K‐means clustering decodes multimodal signals collected from the breath sensor to differentiate between healthy and diseased breath concentrations of ammonia. The on‐body test highlights the operational simplicity and practicality of the system for noninvasively tracing ammonia biomarkers.

Funder

University of North Carolina at Chapel Hill

National Institutes of Health

National Institute of Biomedical Imaging and Bioengineering

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3