Affiliation:
1. National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices South China University of Technology Guangzhou 510641 China
2. Guangdong Provincial Key Laboratory of Semiconductor Micro Display Foshan Nationstar Optoelectronics Company Ltd. Foshan 528000 China
Abstract
AbstractWater‐soluble conductive polymer poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) has a broad application prospect in the field of flexible wearable electronics, but the simple and efficient manufacture of patterned PEDOT:PSS flexible electrodes is still challenging. In this paper, a patterned PEDOT:PSS‐flexible electrode with a electrospinning nano‐fiber substrate is proposed. The electrode substrate is produced by electrospinning a hydrophobic polyvinylidene difluoride (PVDF) matrix material loaded with TiO2 UV‐induced hydrophilic‐hydrophobic conversion particles. The PEDOT:PSS flexible electrode is prepared using a simple UV‐induced selective wettability(UV‐SW) process and optimized vacuum filtration method. The method of manufacturing flexible electrodes based on patterned wetting film substrates is simple and feasible, while the electrode features high precision, good conductivity, and excellent deformation ability. The electrode has a line width error of less than 5%, an initial conductivity of 584.44 S m−1, and maintains stable conductivity under 0–180° bending and 0–30° torsion, with variation rates of only 4.9% and 2.3%, respectively. This paper presents a simple method to fabricate patterned PEDOT:PSS flexible electrode with high precision. This study provides an efficient method for the manufacturing of fibric‐based patterned flexible electrodes, this method is promising for fabric‐based wearable electronics.
Funder
National Natural Science Foundation of China