A Hybrid Upper‐Arm‐Geared Exoskeleton with Anatomical Digital Twin for Tangible Metaverse Feedback and Communication

Author:

Ha Minhyeok1,Lee Jihun1,Cho Yongbeom2,Lee Minwoo1,Baek Hyunwoo2,Lee Jungmin1,Seo Jongmin1,Chun Sejoon1,Kim Kisoo3,Kim Jin‐Gyun2,Lee Won Gu1ORCID

Affiliation:

1. Department of Mechanical Engineering Kyung Hee University Yongin 17104 Republic of Korea

2. Department of Mechanical Engineering (Integrated Engineering) Kyung Hee University Yongin 17104 Republic of Korea

3. Intelligent Optical Module Research Center Korea Photonics Technology Institute (KOPTI) Gwangju 61007 Republic of Korea

Abstract

AbstractThe pandemic coincided with rapid advancements in virtual reality (VR) and mixed reality (MR) in healthcare. The idea of virtually replicating the real world and its associated experiences has garnered significant attention under the newly coined term “metaverse.” The metaverse serves as a communication platform that integrates physical and virtual experiences. However, the lack of physical interaction between users and virtual environments remains an obstacle. This study introduces a hybrid upper‐arm‐geared exoskeleton system that combines an anatomical digital‐twin model with tangible VR torque feedback and an MR remote healthcare monitoring in a musculoskeletal interface device format. The device employs a dual epicyclic geared motor actuator capable of exerting torque feedback. It derived torque profiles that simulate physical interactions with hysteretic damping in the virtual environment. An anatomical digital twin model is also incorporated into the fabricated device in an MR format and assessed the device's performance using electromyogram and thermographic sensors. In addition, it evaluated haptic fidelity and versatility as an immersive metaverse wearable and performed support vector machine‐based analysis for motion feature classification. It believes this approach has the potential to be highly beneficial for providing tangible metaverse feedback and communication combined with a human‐informed digital‐twin model for remote healthcare monitoring in the postpandemic era.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3