Structure optimization: Configuring optimum performance of randomly distributed mixed carbon nanotube bundle interconnects

Author:

Sharma Ritika1ORCID,Rai Mayank Kumar1ORCID,Khanna Rajesh1

Affiliation:

1. Department of Electronics and Communication Engineering Thapar Institute of Engineering and Technology Patiala 147004 India

Abstract

SummaryThis paper presents an efficient optimization strategy based on the Stoyan and Yaskov algorithm to maximize the tube density of randomly distributed mixed carbon nanotube bundles (RMCBs) for configuring optimum performance of on‐chip interconnects. Optimizing tube density has proposed eight different RMCB (RMCB1–RMCB8) structures of a varying number of carbon nanotubes (CNTs), where RMCB1 has the maximum CNTs. Moreover, the ABCD technique adequately analyzes the temperature‐dependent frequency and stability characteristics of a three‐line RMCB interconnect placed on smooth and rough substrates (SiC, BN, and SiO2). The smooth substrate material has the best 3‐dB bandwidth compared with rough SiC substrate, followed by BN and SiO2 for all RMCB structures, and among all structures, the RMCB8 has the best 3‐dB bandwidth. The relative stability of RMCB1 is improved by 134.2% and 22.7% w.r.t. RMCB8 placed on a smooth and rough SiC substrate, respectively. Whereas bandwidth of the RMCB1 is reduced by 26% and 88.5% w.r.t. RMCB8 placed on a smooth and rough substrate, respectively. Hence, there is a tradeoff between the bandwidth and the relative stability as the number of CNT increases. Therefore, RMCB3 placed on a smooth substrate and RMCB4 placed on a rough SiC substrate are considered the best‐optimized RMCB interconnects to maintain a balance between the two.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delay characterization of multilayer graphene nanoribbon interconnects in presence of scattering and thermal effects;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2023-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3