TManual: Assistant for manually measuring length development in structures built by animals

Author:

Mizumoto Nobuaki1ORCID

Affiliation:

1. Okinawa Institute of Science and Technology Graduate University Onna‐son Japan

Abstract

AbstractStructures built by animals are extended phenotypes, and animal behavior can be better understood by recording the temporal development of structure construction. For most subterranean and wood‐boring animals, these structures consist of gallery systems, such as burrows made by mice, tunnel foraging by termites, and nest excavation in ants. Measurement of the length development of such structures is often performed manually. However, it is time‐consuming and cognitively costly to track length development in nested branching structures, hindering the quantitative determination of temporal development. Here, I introduce TManual, which aids the manual measurement of structure length development using a number of images. TManual provides a user interface to draw gallery structures and take over all other processes handling input datasets (e.g., zero‐adjustment, scaling the units, measuring the length, assigning gallery identities, and extracting network structures). Thus, users can focus on the measuring process without interruptions. As examples, I provide the results of the analysis of a dataset of tunnel construction by three termite species after successfully processing 1125 images in ~3 h. The output datasets clearly visualized the interspecific variation in tunneling speed and branching structures. Furthermore, I applied TManual to a complex gallery system by another termite species and extracted network structures. Measuring the lengths of objects from images is an essential task in biological observation. TManual helps users handle many images in a realistic time scale, enabling a comparative analysis across a wide array of species. TManual does not require programming skills and outputs a tidy data frame in CSV format. Therefore, it is suitable for any user who wants to perform image analysis for length measurements.

Funder

Sumitomo Foundation

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference23 articles.

1. Comparison of tunnel geometry of subterranean termites (Isoptera: Rhinotermitidae) in “two‐dimensional” and “three‐dimensional” arenas;Bardunias P.;Sociobiology,2005

2. Interspecific variation in cooperative burrowing behavior by Peromyscus mice

3. Functional Plasticity of Foraging Shelter Tubes Built by Termites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3