The effects of N‐addition on litter mixture effects depend on decomposition time: A case from mixed‐litter decomposition in the Gurbantunggut Desert

Author:

Zhao Hong‐Mei1ORCID,Yang Wei‐Jun2,Cheng Jun‐Hui1,Huang Gang3ORCID,Hu Yu‐Tong1,Li Cong‐Juan4,Sheng Jian‐Dong1ORCID

Affiliation:

1. Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment Xinjiang Agricultural University Urumqi China

2. College of Agronomy Xinjiang Agricultural University Urumqi China

3. Institute of Geography Science Fujian Normal University Fuzhou China

4. National Engineering Technology Research Center for Desert‐Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

Abstract

AbstractChanges in nitrogen (N) deposition and litter mixtures have been shown to influence ecosystem processes such as litter decomposition. However, the interactive effects of litter mixing and N‐deposition on decomposition process in desert regions remain poorly identified. We assessed the simultaneous effects of both N addition and litter mixture on mass loss in a litterbag decomposition experiment using six native plants in single‐species samples with diverse quality and 14‐species combinations in the Gurbantunggut Desert under two N addition treatments (control and N addition). The N addition had no significant effect on decomposition rate of single‐species litter (expect Haloxylon ammodendron), whereas litter mass loss and decomposition rate differed significantly among species, with variations positively correlated with initial phosphorus concentration and negatively correlated with initial lignin concentration. After 18 months, the average mass loss across litter mixtures did not overall differ from those predicted from single species either in control or N addition treatments, that is, mixing of different species had no non‐additive effects on decomposition. The N addition, however, did modify the direction of mixture effects and interacted with incubation time. Added N transformed synergistic effects of litter mixtures to antagonistic effects on mass loss after 1 month of decomposition, while transforming neutral effects of litter mixture to synergistic effects after 6 months of decomposition. Our results demonstrated that initial chemical properties played an important role in litter decomposition, while no effects of litter mixture on decomposition process in this desert region. The N addition altered the litter mixture effects on mass loss with incubation time, implying that increased N deposition in the future may have profound effects on carbon turnover to a greater extent than previously thought in desert ecosystems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3