Distribution pattern and change prediction of Phellodendron habitat in China under climate change

Author:

Zhao Yanghui123ORCID,Wen Yafeng123,Zhang Wenqian123,Wang Chuncheng123,Yan Yadan123,Hao Siwen123,Zhang Donglin124

Affiliation:

1. College of Landscape Architecture Central South University of Forestry and Technology Changsha China

2. Hunan Big Data Engineering Technology Research Center of Natural Protected Landscape Resources Changsha China

3. Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center Changsha China

4. Department of Horticulture University of Georgia Georgia Athens USA

Abstract

AbstractPhellodendron has always been of great significance in promoting human health and ecological restoration. However, human activities and climate change have severely affected habitat, population dynamics and sustainable use of Phellodendron. Little is known about the geographical distribution pattern and their responses to climate change of Phellodendron. In order to reveal the impact of climate change on Phellodendron, we conducted a study based on natural distribution data of two species (297 occurrence points), 20 environmental factors, and an optimized MaxEnt model. Our results identified the main environmental factors influencing Phellodendron, predicted their potential geographical distribution, and assessed migration trends under climate change in China. Our analysis showed that Ph. amurense and Ph. chinense have potential suitable habitats of 62.89 × 104 and 70.71 × 104 km2, respectively. Temperature and precipitation were found to play an essential role in shaping the present geographical distribution of Phellodendron populations. Based on two future climate scenarios, we forecasted that the potential suitable habitat of Ph. amurense would decrease by 12.52% (SSP245) and increase by 25.28% (SSP585), while Ph. chinense would decline by 19.61% (SSP245) and 15.78% (SSP585) in the late‐21st century. The potential suitable habitats of Ph. amurense and Ph. chinense would shift to northward and westward, respectively. Hydrothermal change was found to be the primary driver of the suitable habitat of Phellodendron populations in the future. We recommend establishing nature reserves for existing Phellodendron populations, especially Ph. chinense. Our study provided a practical framework for the impact of climate change on the suitable habitat of Phellodendron species and guided regional cultivation, long‐term conservation, and sustainable use.

Funder

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3