Woody plant functional traits and phylogenetic signals correlate with urbanization in remnant forest patches

Author:

Yang Jingyi1ORCID,Wang Zijin1,Pan Ying1,Zheng Yanjun1

Affiliation:

1. College of Forestry Guizhou University Guiyang China

Abstract

AbstractExploring the alterations in functional traits of urban remnant vegetation offers a more comprehensive perspective on plant assembly within the context of urbanization. While plant functional traits are influenced by both environmental gradients and the evolutionary history of plant species, the specific mechanisms by which urbanization mediates the combination of functional traits and the evolutionary history of remnant vegetation remain unclear. To examine the relationship between functional traits and phylogenies of remnant vegetation and urbanization, we classified the woody plant species surveyed in 72 sample plots in nine remnant forest patches in Guiyang, China, into four groups (urban, rural, middle and general groups) according to their location under different levels of urbanization and measured nine functional traits of these species. The phylogenetic signals of each functional trait of the four species groups were then quantified based on Blomberg's K. Furthermore, we analysed the correlations between functional traits and species abundance using phylogenetic generalized least squares. The results showed that significant phylogenetic signals were detected in more functional traits of the urban group than other groups. Thirteen and three significant relationships between functional traits and species abundance were detected for tree and shrub species after removing phylogenies. Tall tree species were more abundant in the urban group, while the general group favoured the species with adaptable traits (low height and high leaf area and C/N). Overall, we demonstrate that urbanization drove shifts in plant functional traits in remnant forests after combining the phylogenetic patterns.

Funder

Guizhou Science and Technology Department

Guizhou University

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3