A face‐centred finite volume method for high‐contrast Stokes interface problems

Author:

Sevilla Ruben1ORCID,Duretz Thibault2ORCID

Affiliation:

1. Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering Swansea University Wales UK

2. Institüt für Geowissenschaften Goethe Universität Frankfurt am Main Germany

Abstract

AbstractA new face‐centred finite volume method (FCFV) for Stokes problems involving sharp interfaces is proposed. Two formulations, based on two strong forms of the Stokes problem, and using different mixed variables, are presented. Particular attention is paid to the symmetry of the resulting system of global equations, and a simple rewriting of the interface boundary condition is proposed to ensure that one of the formulations preserves the symmetry of the linear system that is usually lost when considering material interfaces. Four numerical examples are considered to test the implementation numerically by performing mesh convergence studies, in two and three dimensions. The examples account for discontinuous viscosity as well as the effect of surface tension. The results show that one of the formulations is less sensitive to the numerical stabilisation used in FCFV methods but does not preserve the symmetry of the global system, whereas the other formulation is more sensitive to the stabilisation, but preserves the symmetry of the resulting system of equations. The FCFV method appears as a promising alternative for the simulation of viscous flow involving internal boundaries on conformal meshes. The potential application of the FCFV method for the purpose of geodynamic modelling is discussed.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3