Phylogenetic analysis and functional characterization of norcoclaurine synthase involved in benzylisoquinoline alkaloids biosynthesis in Stephania tetrandra

Author:

Li Xinyi12ORCID,Li Qishuang23,Jiao Xiang4,Tang Hao25,Cheng Yatian2,Ma Ying2,Cui Guanghong2,Tang Jinfu2,Chen Yun4,Guo Juan2,Huang Luqi2

Affiliation:

1. School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China

2. State Key Laboratory of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China

3. School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China

4. Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden

5. School of Pharmacy Nanjing University of Chinese Medicine Nanjing China

Abstract

AbstractBenzylisoquinoline alkaloids (BIAs) are a class of secondary metabolites that possess diverse pharmaceutical properties and are exclusively accumulated in specific plant genera. The Pictet–Spengler condensation, catalyzed by norcoclaurine synthase (NCS), represents a key enzymatic reaction in the biosynthetic pathway of BIAs. While NCS genes have been identified in several plant families such as Papaveraceae, Berberidaceae, and Ranunculaceae, no NCS genes have been reported in Menispermaceae, which is another genus known to accumulate BIAs. Here, NCSs were isolated and functionally characterized from the Menispermaceae family plant Stephania tetrandra. In vitro enzyme assay identified two functional StNCSs which could catalyze the formation of (S)‐norcoclaurine. These functionally characterized genes were then integrated into engineered yeast to enable the production of norcoclaurine. Phylogenetic analysis of the NCS enzymes revealed that the StNCSs predominantly clustered into two clades. The functional StNCSs clustered with known NCSs, highlighting the presence of a specific NCS catalytic domain. This study not only provides additional genetic components for the synthetic biology‐based production of BIAs in yeast but also contributes to the understanding of the phylogenetic relationships and structure–function relationship of NCS genes involved in the origin and production of BIAs.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3