Epilepsy classification using artificial intelligence: A web‐based application

Author:

Asadi‐Pooya Ali A.12ORCID,Fattahi Davood1,Abolpour Nahid1,Boostani Reza3,Farazdaghi Mohsen1ORCID,Sharifi Mehrdad456

Affiliation:

1. Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran

2. Department of Neurology, Jefferson Comprehensive Epilepsy Center Thomas Jefferson University Philadelphia Pennsylvania USA

3. Department of Computer Science Engineering and Information Technology Shiraz University Shiraz Iran

4. Vice‐Chancellery for Treatment Affairs Shiraz University of Medical Sciences Shiraz Iran

5. Emergency Medicine Department, School of Medicine Shiraz University of Medical Sciences Shiraz Iran

6. Emergency Medicine Research Center Shiraz University of Medical Sciences Shiraz Iran

Abstract

AbstractObjectiveThe purpose of the current endeavor was to evaluate the feasibility of using easily accessible and applicable clinical information (based on history taking and physical examination) in order to make a reliable differentiation between idiopathic generalized epilepsy (IGE) versus focal epilepsy using machine learning (ML) methods.MethodsThe first phase of the study was a retrospective study of a prospectively developed and maintained database. All patients with an electro‐clinical diagnosis of IGE or focal epilepsy, at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2022, were included. The first author selected a set of clinical features. Using the stratified random portioning method, the dataset was divided into the train (70%) and test (30%) subsets. Different types of classifiers were assessed and the final classification was made based on their best results using the stacking method.ResultsA total number of 1445 patients were studied; 964 with focal epilepsy and 481 with IGE. The stacking classifier led to better results than the base classifiers in general. This algorithm has the following characteristics: precision: 0.81, sensitivity: 0.81, and specificity: 0.77.SignificanceWe developed a pragmatic algorithm aimed at facilitating epilepsy classification for individuals whose epilepsy begins at age 10 years and older. Also, in order to enable and facilitate future external validation studies by other peers and professionals, the developed and trained ML model was implemented and published via an online web‐based application that is freely available at http://www.epiclass.ir/f‐ige.

Funder

Shiraz University of Medical Sciences

Publisher

Wiley

Subject

Neurology (clinical),Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3