Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron

Author:

Linz David M.1ORCID,Hara Yuichiro23ORCID,Deem Kevin D.1ORCID,Kuraku Shigehiro23ORCID,Hayashi Shigeo45ORCID,Tomoyasu Yoshinori1ORCID

Affiliation:

1. Department of Biology Miami University Oxford Ohio USA

2. Phyloinformatics Unit RIKEN Center for Life Science Technologies Kobe Hyogo Japan

3. Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research Kobe Hyogo Japan

4. Laboratory for Morphogenetic Signaling RIKEN Center for Biosystems Dynamics Research Kobe Hyogo Japan

5. Department of Biology Kobe University Graduate School of Science Kobe Hyogo Japan

Abstract

AbstractThe acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from Drosophila studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (Tribolium castaneum) and the Japanese stag beetle (Dorcus hopei). Our analysis revealed sets of genes enriched in Tribolium elytra (57 genes) and genes unique to the hindwings, which possess more “typical” insect wing morphologies (29 genes). Over a third of the hindwing‐enriched genes were “candidate genes” whose functions were previously analyzed in Tribolium, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron‐enriched genes in Tribolium uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.

Publisher

Wiley

Subject

Developmental Biology,Genetics,Animal Science and Zoology,Molecular Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3