ROS‐mediated PERK‐CHOP pathway plays an important role in cadmium‐induced HepG2 cells apoptosis

Author:

Zhaohui Cao12,Cifei Tang12,Di Huang12,Weijia Zeng1,Cairui Han1,Zecong Li1,Xiaobo Hu12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School University of South China Hengyang China

2. The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education University of South China Hengyang China

Abstract

AbstractCadmium (Cd) is a common heavy metal that is highly toxic to the liver, however, the exact mechanism underlying this damage accompanied by apoptosis has not been thoroughly demonstrated. In this study, we found that Cd exposure significantly reduced cell viability, including the increased populations of apoptotic cells and caspase‐3/‐7/‐12 activation in HepG2 cells. Mechanistically, Cd initiated oxidative stress via elevating reactive oxygen species (ROS) levels, leading to oxidative damage in HepG2 cells. Simultaneously, Cd exposure induced endoplasmic reticulum (ER) stress via activating the protein kinase RNA‐like ER kinase (PERK)‐C/EBP homologous protein (CHOP) axis in HepG2 cells, and subsequently disturbed ER function as increased Ca2+ releasing from ER lumen. Intriguingly, further study revealed that oxidative stress is closely related with ER stress, as pretreatment with ROS scavenger, N‐acetyl‐l‐cysteine (NAC) markedly reduced ER stress as well as protected ER function in Cd treated HepG2 cell. Collectively, these findings first revealed Cd exposure induced HepG2 cells death via a ROS‐mediated PERK‐CHOP‐related apoptotic signaling pathway, which provides a novel insight into the mechanisms of Cd‐induced hepatotoxicity. Furthermore, inhibitors for oxidative stress and ER stress might be considered as a new strategy to prevent or treat this disorder.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3