Characterization of DNA concentration in urine and dried blood samples to detect the c.577 deletion within the EPO gene

Author:

Leuenberger Nicolas1ORCID,Jan Nicolas1,Kuuranne Tiia1,Castella Vincent2

Affiliation:

1. Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva Lausanne University Hospital and University of Lausanne Lausanne Switzerland

2. Forensic Genetics Unit, University Center of Legal Medicine, Lausanne‐Geneva Lausanne University Hospital and University of Lausanne Lausanne Switzerland

Abstract

AbstractThe EPO gene variant, c.577del (VAR‐EPO), was discovered in the Chinese population in 2021. The mutated protein is naturally present in urine from individuals heterozygous for the variant. Electrophoresis methods currently applied in anti‐doping laboratories produce a pattern in samples from individuals carrying VAR‐EPO that cannot be unambiguously distinguished from individuals who received recombinant EPO doses. Consequently, the analysis of blood samples is obligatory to facilitate interpretation of suspicious findings from urine samples. However, this complicates the process and delays the reporting. Objective of this study was to develop EPO c.577del detection in urine and dried blood samples (DBS) in order to facilitate and accelerate EPO results management. Moreover, estimation of the success rate of sequencing regarding concentration of DNA in urine and DBS was evaluated. Conclusive results regarding Sanger sequencing were obtained for all samples with DNA concentrations above 0.024 ng/μL DNA in 80% of urines samples from volunteers. The potential success of DNA sequencing rate in athletes' urines was investigated. A total of 191 urine samples were considered. DNA concentration exceeding 0.024 ng/μL was detected in 85% of the samples. Interestingly, in‐competition samples had a significantly higher DNA concentration than out‐of‐competition male urine samples (0.330 vs. 0.084 ng/μL). Moreover, conclusive EPO sequences were obtained for 100% of DBS (cellulose and polymer matrices). In conclusion, method for detection of EPO gene variant was developed in urine and DBS. Characterization of DNA concentration was performed in order to evaluate the probability of success of sequencing EPO gene in anti‐doping field.

Publisher

Wiley

Subject

Spectroscopy,Pharmaceutical Science,Environmental Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3