Forecasting the stock risk premium: A new statistical constraint

Author:

Hao Xianfeng1,Wang Yudong2ORCID

Affiliation:

1. School of Management & Engineering Nanjing University Nanjing China

2. School of Economics and Management Nanjing University of Science and Technology Nanjing China

Abstract

AbstractWe develop a new statistical constraint to improve the stock return forecasting performance of predictive models. This constraint uses a new objective function that combines the Huber loss function with the Ridge penalty. Out‐of‐sample results indicate that our constraint improves the predictive ability of the univariate models. The constrained univariate models significantly outperform the historical average benchmark model assuming no predictability. The forecast improvement based on the new constraint is also evident for multivariate information methods including forecast combination and diffusion index. The model is capable of capturing time‐varying risk which serves as the potential economic explanation of the improved return predictability. Our results are robust to different evaluation subsamples, validation sample lengths, and different risk aversion coefficients.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3