Stock movement prediction: A multi‐input LSTM approach

Author:

Tang Pan1,Tang Cheng1,Wang Keren1

Affiliation:

1. School of Economics and Management Southeast University Nanjing 211189 China

Abstract

AbstractGenerally, the nonlinear and non‐stationary financial time series becomes an obstacle in the process of stock movement prediction. But the recent theories of machine learning and deep learning have provided with some new solutions. Based on LSTM (long short‐term memory), we propose a hybrid model of wavelet transform (WT) and multi‐input LSTM to predict the trend of SSE composite index. It can mine valid data in time series and support different types of data as input. The whole model is divided into two stages. In the first stage, we adopt the level 1 decomposition with db4 mother wavelet to eliminate noise. In the second stage, combinative and qualitative analysis was made base on the data from Chinese stock market, US stock market, and technical indicators as input. According to the result, the proposed model, with the accuracy of 72.19%, performs better than single‐input LSTM, decision tree, random forest, Support Vector Machine (SVM), and XGBoost.

Funder

National Office for Philosophy and Social Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3