Affiliation:
1. Department of Physics and Astronomy University of Oklahoma Norman Oklahoma 73019 USA
2. Swift Solar San Carlos California 94070 USA
3. National Renewable Energy Laboratory Golden Colorado 80401 USA
4. Department of Chemistry & Biochemistry University of Oklahoma Norman Oklahoma 73019 USA
Abstract
AbstractThe presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)3 solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light J–V measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.
Funder
U.S. Department of Energy