Benzo[d]thiazole Based Wide Bandgap Donor Polymers Enable 19.54% Efficiency Organic Solar Cells Along with Desirable Batch‐to‐Batch Reproducibility and General Applicability

Author:

Pang Bo1,Liao Chentong1,Xu Xiaopeng1,Yu Liyang1,Li Ruipeng2,Peng Qiang1ORCID

Affiliation:

1. School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

2. National Synchrotron Light Source II Brookhaven National Lab Suffolk Upton NY 11973 USA

Abstract

AbstractThe limited selection pool of high‐performance wide bandgap (WBG) polymer donors is a bottleneck problem of the nonfullerene acceptor (NFA) based organic solar cells (OSCs) that impedes the further improvement of their photovoltaic performances. Herein, a series of new WBG polymers, namely PH‐BTz, PS‐BTz, PF‐BTz, and PCl‐BTz, are developed by using the bicyclic difluoro‐benzo[d]thiazole (BTz) as the acceptor block and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) derivatives as the donor units. By introducing S, F, and Cl atoms to the alkylthienyl sidechains on BDT, the resulting polymers exhibit lowered energy levels and enhanced aggregation properties. The fluorinated PBTz‐F not only exhibits a low‐lying HOMO level, but also has stronger face‐on packing order and results in more uniform fibril‐like interpenetrating networks in the related PF‐BTz:L8‐BO blend. A high‐power conversion efficiency (PCE) of 18.57% is achieved. Moreover, PBTz‐F also exhibits a good batch‐to‐batch reproducibility and general applicability. In addition, ternary blend OSCs based on the host PBTz‐F:L8‐BO blend and PM6 guest donor exhibits a further enhanced PCE of 19.54%, which is among the highest values of OSCs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3