Blood–Brain Barrier‐Penetrating and Lesion‐Targeting Nanoplatforms Inspired by the Pathophysiological Features for Synergistic Ischemic Stroke Therapy

Author:

Tang Lu12,Yin Yue12,Liu Hening12,Zhu Mengliang34,Cao Yuqi12,Feng Jingwen12,Fu Cong12,Li Zixuan12,Shu Weijie12,Gao Jifan12,Liang Xing‐Jie34ORCID,Wang Wei12

Affiliation:

1. State Key Laboratory of Natural Medicines Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 P. R. China

2. NMPA Key Laboratory for Research and Evaluation of Cosmetics China Pharmaceutical University Nanjing 210009 P. R. China

3. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China No. 11, First North Road, Zhongguancun Beijing 100190 P. R. China

4. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractIschemic stroke is a dreadful vascular disorder that poses enormous threats to the public health. Due to its complicated pathophysiological features, current treatment options after ischemic stroke attack remains unsatisfactory. Insufficient drug delivery to ischemic lesions impeded by the blood–brain barrier (BBB) largely limits the therapeutic efficacy of most anti‐stroke agents. Herein, inspired by the rapid BBB penetrability of 4T1 tumor cells upon their brain metastasis and natural roles of platelet in targeting injured vasculatures, a bio‐derived nanojacket is developed by fusing 4T1 tumor cell membrane with platelet membrane, which further clothes on the surface of paeonol and polymetformin‐loaded liposome to obtain biomimetic nanoplatforms (PP@PCL) for ischemic stroke treatment. The designed PP@PCL could remarkably alleviate ischemia‐reperfusion injury by efficiently targeting ischemic lesion, preventing neuroinflammation, scavenging excess reactive oxygen species (ROS), reprogramming microglia phenotypes, and promoting angiogenesis due to the synergistic therapeutic mechanisms that anchor the pathophysiological characteristics of ischemic stroke. As a result, PP@PCL exerts desirable therapeutic efficacy in injured PC12 neuronal cells and rat model of ischemic stroke, which significantly attenuates neuronal apoptosis, reduces infarct volume, and recovers neurological functions, bringing new insights into exploiting promising treatment strategies for cerebral ischemic stroke management.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3