Long‐Cycle‐Life Sodium‐Ion Battery Fabrication via a Unique Chemical Bonding Interface Mechanism

Author:

Meng Weijia1,Dang Zhenzhen1,Li Diansen12ORCID,Jiang Lei1

Affiliation:

1. Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology Ministry of Education School of Chemistry Beihang University Beijing 100191 China

2. Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China

Abstract

AbstractTitanates have been widely reported as anode materials for sodium‐ion batteries (SIBs). However, their wide temperature suitability and cycle life remain fundamental issues that hinder their practical application. Herein, a novel hollow Na2Ti3O7 microsphere (H‐NTO) with a unique chemically bonded NTO/C(N) interface is reported. Theoretical calculations demonstrated that the NTO/C(N) interface stabilizes the crystal structure, and the optimized interface enables the H‐NTO anode to stably operate for 80 000 cycles in a conventional ester electrolyte with negligible capacity loss. Optimizing the electrolyte allows the H‐NTO electrode to cycle stably for 200 calendar days without capacity degradation at −40 °C. The excellent cycling stability is attributed to the NTO/C(N) interface and the stable solid electrolyte interphase formed by the highly adaptable electrolyte/electrode interface. Titanate exhibits solvent co‐intercalation behavior in ether‐based electrolytes, and its robust structure ensures that it can adapt to large volume changes at low temperatures. This study provides a unique perspective on the long‐cycle mechanism of titanate anodes and highlights the critical importance of manipulating the interfacial chemistry in SIBs, including the material and electrode/electrolyte interfaces.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Aeronautical Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3