Dynamic (Sub)surface‐Oxygen Enables Highly Efficient Carbonyl‐Coupling for Electrochemical Carbon Dioxide Reduction

Author:

Chu You‐Chiuan1,Chen Kuan‐Hsu1,Tung Ching‐Wei2,Chen Hsiao‐Chien3,Wang Jiali1,Kuo Tsung‐Rong45,Hsu Chia‐Shuo1,Lin Kuo‐Hsin6,Tsai Li Duan6,Chen Hao Ming147ORCID

Affiliation:

1. Department of Chemistry and Center for Emerging Materials and Advanced Devices National Taiwan University Taipei 10617 Taiwan

2. Center for Environmental Sustainability and Human Health Ming Chi University of Technology New Taipei 24301 Taiwan

3. Center for Reliability Science and Technologies Center for Sustainability and Energy Tecnhologies Chang Gung University Taoyuan 33302 Taiwan

4. Graduate Institute of Nanomedicine and Medical Engineering College of Biomedical Engineering Taipei Medical University Taipei 11031 Taiwan

5. Precision Medicine and Translational Cancer Research Center Taipei Medical University Hospital Taipei Taiwan

6. Material and Chemical Research Laboratories Industrial Technology Research Institute Chutung Hsinchu 31040 Taiwan

7. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

Abstract

AbstractNowadays, high‐valent Cu species (i.e., Cuδ+) are clarified to enhance multi‐carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi‐carbon production and results in ambiguous roles of high‐valent Cu species. Dynamic Cuδ+ during CO2RR leads to erratic valence states and challenges of high‐valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface‐oxygenated degree (κ), is proposed to quantify the active high‐valent Cu species on the (sub)surface, which regulates the multi‐carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi‐carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi‐carbon partial current density of ≈330 mA cm−2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high‐valent species and further achieve carbon neutralization.

Funder

National Science and Technology Council

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3