Topological Spin Textures in a Non‐Collinear Antiferromagnet System

Author:

Liu Xionghua12,Feng Qiyuan34,Zhang Dong12,Deng Yongcheng12,Dong Shuai34,Zhang Enze12,Li Weihao12,Lu Qingyou34,Chang Kai12,Wang Kaiyou1256ORCID

Affiliation:

1. State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory Chinese Academy of Sciences Hefei Anhui 230031 P. R. China

4. Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China

5. Beijing Academy of Quantum Information Sciences Beijing 100193 P. R. China

6. Center for Excellence in Topological Quantum Computation University of Chinese Academy of Science Beijing 100049 P. R. China

Abstract

AbstractTopologically protected magnetic “whirls” such as skyrmions in antiferromagnetic materials have recently attracted extensive interest due to their nontrivial band topology and potential application in antiferromagnetic spintronics. However, room‐temperature skyrmions in natural metallic antiferromagnetic materials with merit of probable convenient electrical manipulation have not been reported. Here, room‐temperature skyrmions are realized in a non‐collinear antiferromagnet, Mn3Sn, capped with a Pt overlayer. The evolution of spin textures from coplanar inverted triangular structures to Bloch‐type skyrmions is achieved via tuning the magnitude of interfacial Dzyaloshinskii–Moriya interaction. Beyond that, the temperature can induce an unconventional transition from skyrmions to antiferromagnetic meron‐like spin textures at ≈220 K in the Mn3Sn/Pt samples. Combining with the theoretical calculations, it is found that the transition originates from the temperature dependence of antiferromagnetic exchange interaction between kagome sublayers within the Mn3Sn crystalline unit‐cell. These findings open the avenue for the development of topological spin‐swirling‐based antiferromagnetic spintronics.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3