Uncovering the Intrinsic High Fracture Toughness of Titanium via Lowered Oxygen Impurity Content

Author:

Zou Xiao‐Wei1,Han Wei‐Zhong1ORCID,Ma En2

Affiliation:

1. Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China

2. Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China

Abstract

AbstractTitanium (Ti) and its alloys are known to exhibit room‐temperature fracture toughness below 130 MPa m1/2, only about one half of the best austenitic stainless steels. It is purported that this is not the best possible fracture resistance of Ti, but a result of oxygen impurities that sensitively retard the activities of plasticity carriers in this hexagonal close‐packed metal. By a reduction of oxygen content from the 0.14 wt% in commercial purity Ti to 0.02 wt%, the mode‐Ι fracture toughness of the low‐oxygen Ti is measured to be as high as KJIc ≈ 255 MPa m1/2, corresponding to J‐integral‐based crack‐initiation toughness of up to JIc ≈ 537 kJ m−2. This extraordinary toughness, reported here for the first time for pure Ti, places Ti among the toughest known materials. The intrinsic high fracture resistance is attributed to the profuse plastic deformation in a significantly enlarged plastic zone, rendered by the pronounced deformation twinning ahead of the crack tip along with ample twin‐stimulated 〈c+a〉 dislocation activities, in the absence of impeding oxygen. Controlling the content of a property‐controlling impurity thus holds the promise to be a readily applicable strategy to reach for unprecedented damage tolerance in some other structural alloys.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3