Universal F4‐Modified Strategy on Metal–Organic Framework to Chemical Stabilize PVDF‐HFP as Quasi‐Solid‐State Electrolyte

Author:

Huang Wenhuan1,Wang Shun1,Zhang Xingxing1,Kang Yifan1,Zhang Huabin2,Deng Nan3,Liang Yan3,Pang Huan4ORCID

Affiliation:

1. Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 P. R. China

2. Chemistry Program Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia

3. Instrumental Analysis Center Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China

4. School of Chemistry and Chemical Engineering Institute for Innovative Materials and Energy Yangzhou University Yangzhou 225002 P. R. China

Abstract

AbstractSolid‐state electrolytes (SSEs) based on metal organic framework (MOF) and polymer mixed matrix membranes (MMMs) have shown great promotions in both lithium‐ion conduction and interfacial resistance in lithium metal batteries (LMBs). However, the unwanted structural evolution and the and the obscure electrochemical reaction mechanism among two phases limit their further optimization and commercial application. Herein, fluorine‐modified zirconium MOF with diverse F‐quantities is synthesized, denoted as Zr‐BDC‐Fx (x = 0, 2, 4), to assemble high performance quais‐solid‐state electrolytes (QSSEs) with PVDF‐HFP. The chemical complexation of F‐sites in Zr‐BDC‐F4 stabilized PVDF‐HFP chains in β‐phase and disordered oscillation with enhanced charge transfer and Li transmit property. Besides, the porous confinement and electronegativity of F‐groups enhanced the capture and dissociation of TFSI‐ anions and the homogeneous deposition of LiF solid electrolyte interphase (SEI), promoting the high‐efficient transport of Li+ ions and inhibiting the growth of Li dendrites. The superb specific capacities in high‐loaded Li.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3